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Abstract 

We describe an analysis of the population dynamics of recombinant cultures using a dimensionless time variable. In situations where 
information on the history or growth dynamics of the culture is desired directly in terms of generations, a dimensionless time domain analysis 
is preferred to the conventional real time analysis. The dimensionless time domain approach that has been developed in this study appears to 
be quite effective in obtaining such information. The usefulness of this approach in analysis of practical situations has also been illustrated. 
This approach is also expected to be particularly useful in investigating the growth dynamics of recombinant cell systems where the culture 
concentration is a function of the cell histories quantitated in terms of generations (e.g. cultures growing under auxotrophic selection 
pressure). 0 1997 Elsevier Science S.A. 
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1. Introduction 

Generation specific information on population dynamics 
of mixed culture systems, especially recombinant cell sys- 
tems, is difficult, if not impossible, to obtain in a straightfor- 
ward manner from real time analysis of the system dynamics. 
Situations might arise in a kinetic study of recombinant cell 
systems when one is interested in obtaining segregated infor- 
mation on the “history” of the culture or in describing the 
growth dynamics of the system in terms of generations 
instead of real time units (hours, days etc.). Such situations 
call for an analysis of the population dynamics using a dimen- 
sionless time variable as described in this communication, 
instead of the conventional real time analysis. The following 
sections describe this alternative approach to real time anal- 
ysis, viz. dimensionless time domain analysis, in the context 
of recombinant culture dynamics. 

2. Analysis 

Considering a batch culture (non-recombinant) that is not 
growing synchronously (in synchronous growth the culture 
concentration does not change continuously with time but 
doubles only at discrete instants due to “synchronised” divi- 
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sion of all the cells in the culture), the culture concentration 
X, may be expressed as a function of real time “t”, by the 
differential rate equation: 

dXidt=pX (1) 

where the parameter p is defined as the specific growth rate. 
If the initial condition is expressed as X=X, at t = 0, then the 
solution of Eq. ( 1) takes the form 

(2) 

During the “exponential growth phase”, p is constant and 
the right hand side of Eq. (2) may be evaluated directly, i.e. 

X/X, = exp( pt) (3) 

Let I = td denote the time required for the culture concentra- 
tion to double, i.e. (X/X,) =2 at t= td. Substituting these 
values into Eq. (3) one obtains an expression for the doubling 
time, td: 

td= (In 2)/y (4) 

For an exponentially growing culture, p is constant, thus it 
follows from Eq. (4), that the culture doubling time, td is 
constant too. Now, substituting for /J from Eq. (4) in Eq. 
(3), the relation 
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(X/X,) = 2”‘fJ (5) 

is obtained. Thus, if 0 < t/r,, < 1, then the culture is in the first 
generation, if 1 < t/t, < 2, the culture is in the second gener- 
ation and so on. Eq. (5) may, therefore, be looked upon as a 
restatement of the exponential growth law to the base 2 with 
the term (t/Q denoting the number of generations-integral 
or fractional. In order to obtain a relation analogous to Eq. 
(5) for the general case of growth (when p is not constant), 
a variable, 7, (say), may be defined by the relation I 7= In 2 

0 
(6) 

which may then be used to restate Eq. (2) in terms of 7: 

XIX, = 2’ (7) 

Since p has dimensions of (time) - ‘, it is evident from Eq. 
(6) that the variable ris dimensionless. Again, since the term 
(t/t*) is dimensionless, it appears from a comparison of Eqs. 
(5) and (7) that 7 indeed represents a dimensionless time. 
In fact, Eq. (7) implies that at the instant r (in the dimen- 
sionless time domain) the culture concentration has increased 
2’ times with respect to its value at the initial instant (i.e. 
T= 0). Thus r-domain analysis (e.g. Eq. (7)) may be con- 
sidered as an alternative to real time, i.e. t-domain analysis 
in situations where direct information on the history or growth 
behaviour of the culture, in terms of generations, is desired. 
If I[ r] denotes the integral part of r, then, “for a culture in 
the jth generation”, it follows that 

o’- 1) =1[7] (8) 

The extension of these concepts to recombinant cell cul- 
tures may now be undertaken. The real time dynamics of 
recombinant cultures may be described by the rate equations 
developed originally by Imanaka and Aiba [ 1 ] : 

dX+/dt= (1 -p)p+X+ (9) 

dXPldt=pp+X+ + p-X- (10) 

where superscripts + and - denote plasmid-bearing (P’) 
and plasmidless (P-) strains respectively and “p” is the 
relative segregation rate. Let us first consider the dynamics 
of the Pt population. If p > 0, signifying that P- cells may 
arise out of the division of P+ cells due to plasmid segrega- 
tion, then the doubling time tz is distinctly different from the 
division time t& as clarified earlier (e.g. Hong [ 21). For 
exponential growth (i.e. constant p”+ and /..-) with constant 
p, these parameters may be expressed as 

t; = (In 2)/p+ 

and 

(11) 

tz=(ln2)/[(1-p)p+] (12) 

Accordingly, T may be defined either in terms of t; or ti . 
Thus, if r is defined as 

7= t/t; (13) 

then one may obtain from Eq. (9), 

x+/x; =(2-p)r (14) 

where, p, the segregation coefficient, is related to p by 

(1 -p)ln 2=ln(2-p) (15) 

On the other hand, if r is defined as 

r= tit,+ ( 16) 

then instead of Eq. ( 14) one must use the equation 

x+1x; =2’ 

to describe the system dynamics. 

(17) 

Thus, depending on whether the term generation refers to 
a generation of cell division or a generation of cell growth 
(i.e. doubling), the definition of rshall be given by Eqs. ( 13) 
or ( 16) respectively, and the fundamental equation describ- 
ing the dynamics of the Pt population will accordingly refer 
to Eqs. ( 14) or ( 17.). If, however, either of I.L’~ or p or both 
are not constant, then Eqs. ( 13) and ( 16) must be modified 
adequately, as discussed below, in order to define r for these 
situations. 

Eq. (14) is derived on the implicit assumption that p 
(hence p) is constant. Thus, when the latter is a variable, Eq. 
( 17) should be used instead to describe the system dynamics. 
It follows consequently from Eq. (9) that r must then be 
defined as 

(18) 

The situation when only pL+, but not p, is variable may 
also be considered. Here, Eq. (14) may be used, so the def- 
inition of r takes the form 

I  

T= 
U 

(1 -p)p+ dt ln(2-p) 
0 

which, on simplification using Eq. ( 15), becomes 

r=(ip+ dt),/ln 2 
0 

(19) 

(20) 

It may be easily verified that for constant p + , Eq. ( 13) 
follows from Eq. (20). Thus, for constant /3 and variable pCLf, 
Eq. (14) still holds. For this case, therefore, the general 
definition of r is given by Eq. (20). 

Assuming the above definition to be valid, the growth 
dynamics of the P- population in the r-domain may now be 
analyzed. The basis of this analysis is similar to that used by 
Srienc et al. [ 31 for evaluating the time course of growth of 
P- cells following a segregated approach in the real time 
domain. Consequently, the concentration of P- cells in the 
culture at the instant 7, is viewed conceptually and mathe- 
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matically as the sum over all z, (0 < z < r) of the concentra- 
tions of P- cells, at 7, that originated from P+ cells at the 
instant z, and which have been growing for an interval 
(7-z). 

Considering the situation when x0 = 0 (where x=X- IX+ 
and subscript “0” indicates the initial instant), i.e. when no 
P- cells are present initially, it follows from Eq. ( IO) that 
the instantaneous rate of formation of P- cells (from Pi 
cells) at time “t” in the real time domain is given by 

dX- ldt=pp+X,+ (21) 

If z denotes the corresponding instant in the r-domain, then, 
using Eqs. ( 14) and (20), the above equation may be 
expressed in the r-domain as: 

dX;/dz= In -? [( )I 2-P 
x:(2-p)’ (22) 

It may be noted here thatX,- andX:; denote the same quantity. 
The “history parameter”, (f3); for P- cells may now be 

introduced. If the subpopulation of P- cells originating at the 
instant z be in their ith generation at the current instant r then 

(i-1)=1[(0)T] (23) 

i.e. with reference to Eq. (8) it may be said that { 0): is the 
analogue of r for P- cells. Further, in analogy with Eq. (7), 
it may be inferred that the concentration of the said subpo- 
pulation increases by a factor 2”‘: with respect to its value at 
the instant ‘ ‘z’ ‘. This may be expressed mathematically as 

dX,=2’“‘dX~- (24) 

Combining Eqs. (22) and (24), we finally arrive at an 
expression for the overall concentration of P- cells, {X- }G 
at the instant r, for the condition x0 = 0, i.e. 

I= T 

[{X-};lX,‘],=,=ln -!- 
( 11 2-P 

2”‘:(2-p)‘dz 
i = 0 

(25) 

If, instead of the overall concentration, we require the con- 
centration, (X- )r,, say, where 0 <z, < T then this quantity 
may be obtained by simply changing the lower limit of inte- 
gration in Eq. (25) from z=O to z=z,. 

It may be shown that the initial presence of P- cells in the 
system (i.e. x0 > 0) mathematically translates to the addition 
of a separate term to the quantity [ {X- )G/X,’ ] xt,=0 as shown 
below: 

[ix- Iam IX<,>0 = [(X-)~/X~],=,+Xo2’N”; (26) 

An expression for evaluation of the “history parameter”, 
{ 0): is still required. If the ratio of the specific growth rates, 
a, where (Y is defined as 

Cl=/..-I/J+ (27) 

is constant, then, following earlier investigators (e.g. Park et 
al. [ 41) { f3}: may be expressed as 

{ fq.;= a( 7-z) (28) 

In general, when cy is variable, ( 0}: is given by 

(29) 

the notation cr( z) signifying that LY is a function of the dimen- 
sionless time variable z. For constant (Y, the result expressed 
in Eq. (28) follows directly from Eq. (29). If the situation 
under consideration permits the use of a constant LY (e.g. if 
the specific growth rates are Monod functions of a limiting 
substrate, then the relative values of the saturation coefficients 
for the P+ and P- strains determine the value of (Y, as dis- 
cussed earlier by the present authors [ 5]), then using the 
corresponding value of ( 0)-T from Eq. (28), the integration 
in Eq. (25) may be performed analytically. In general, if z, 
and z2 be the lower and upper limits of integration, then the 
integral, I, (say) in Eq. (25) may be expressed as: 

2d:2-.-)(2-p)-dz (30) 

for which the integrated result is 

I( 2”‘z/ln 4) (4’” - &I) (31) 

where 

4=(2-/q/2” (32) 

For z, = 0 and z2 = 7, using the result expressed in Eq. ( 3 1) , 
one obtains from Eq. (25). 

[{X-lCYX~lx,,=o=ln 
( 1 
& $v-1) (33) 

One of the primary objectives of r-domain analysis in a 
recombinant culture is to use Eq. (25) to obtain segregated 
information on generation specific subpopulations of the P- 
cell population. Nevertheless, the result expressed in Eq. ( 33) 
serves to certify the validity and correctness of the r-domain 
analysis. If the t-domain Eqs. (9) and (10) are solved for 
constant p and CY, with x0 =0, and the expression thus 
obtained for (X- /Xz ) be transformed to the r-domain. the 
final result is identical to Eq. (33). 

Suppose it is required to find the fractional concentration 
of those P- cells in a recombinant culture that are growing 
for I k generations at real time t,. If zk denotes the instant 
(in the r-domain) when this subpopulation first appeared and 
r denotes the current instant (corresponding to real time t, ) , 
then, in the general case, zk may be evaluated from Eq. (29) 
using z = zk and i3Tk = k, i.e. 

(34) 

Assuming that a(z) values may be obtained against corre- 
sponding z values, the above equation may be solved for zk 
by trial, after replacing the integral by an appropriate quad- 
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Fig. I. Progress of the fractional concentration hk with the number of gen- 
erations (7) and real time I (in hours) for different “history parameters”. 

rature formula. Next, denoting the fractional concentration 
of the subpopulation under consideration (expressed as a 
fraction of the overall P- population) by Ak, the latter may 
be evaluated using the following expression: 

I 

I 2’elr(2-p);dz 
A,=: (35) 

I 
pq-py & 

0 

For constant (Y, the above expression simplifies to 

,k=4’-4zL 
4’- 1 

(36) 

The fraction P,~,;“, of P- cells that have a “history param- 
eter” i- where i, I i- I iu may be calculated directly using 
the parameter A, as shown below 

Pt,.i, = Ai" - A- u. (37) 

The usefulness of r-domain analysis may be illustrated by 
showing in graphical form the progress of the fractional con- 
centration A,, with the number of generations for different 
“history parameters”, i.e. for different values of k. Towards 
this end, 10 generations of exponential growth in a recom- 
binant culture with the kinetic parameters, say, pf =0.80 
hh’; p- ~0.88 hh ‘; p=O.OS; has been considered as an 
example. From the stated conditions it follows that LX is con- 
stant, so that zk may be obtained from the relation 

k=a(v-+) (38) 

which follows from Eq. (34) for constant (Y; and Eq. (36) 
may be used for calculating hk. Further, since p+ is constant, 
Eq. (20) reduces to the form 

r=p+tT/(ln 2) (39) 

which may be used to obtain values of real time t (h) corre- 
sponding to 7. In the present example, Ak vs. rplots have been 
constructed for five different values of k, viz. k=2, 4, 6, 8, 
10; and these are shown in Fig. 1. The real time scale corre- 

sponding to the dimensionless time scale has also been given 
in the figure. Evidently, Fig. 1 may also be used to calculate 
the parameter piL,lU as defined by Eq. (37). 

3. Conclusions 

The above analysis shows the usefulness of following a 
dimensionless time domain approach in investigating the 
growth dynamics of recombinant cultures in situations where 
the emphasis is on obtaining quantitative information on the 
population dynamics in terms of generations. For recombi- 
nant cell systems where the culture concentration is a function 
of the cell histories, quantitated in terms of generations, e.g. 
cultures growing under auxotrophic selection pressure 
(Satyagal and Agrawal [ 61)) the r-domain analysis that has 
been developed in this paper is expected to be particularly 
useful. In such systems, the number of generations of cell 
growth that may be sustained by a newly originating P- cell, 
in batch culture, depends on the amount of the essential nutr- 
ent originally inherited by the cell during its formation from 
a Pi cell through plasmid segregation. Thus, the overall 
concentration of P- cells in the culture becomes a function 
of the distribution of individual cell histories quantified in 
terms of generation units. The use of r-domain approach in 
such situations seems to be the preferred alternative to a real 
time analysis. 

4. Nomenclature 

131 
I 

j 

k 

P 
P+ 
P- 
I 
rd 

c 

G 

X 

X+ 
X- 

2 

Zl~Z2 

zk 

integral generation number of plasmidless cells 
integral occurring in Eqs. (25) and (30) 
integral generation number “for a culture in thejth 
generation” 
a particular value of the “history parameter” { f3)l 
for z = zk 
relative segregation rate of plasmid-bearing cells 
plasmid-bearing cells 
plasmidless cells 
real time (h) 
doubling time of cells (h) 
doubling time of plasmid-bearing cells (h) 
division time of plasmid-bearing cells (h) 
concentration of cells in culture (in appropriate 
units) 
concentration of plasmid-bearing cells 
concentration of plasmidless cells 
dummy variable of integration in the T-domain; 
also, an arbitrary instant in the r-domain 
particular values of z 
value of z corresponding to the value { 0):= k 

Greek symbols 

CY ratio of specific growth rates of plasmidless and 
plasmid-bearing cells ( = ,L- /pi-) 
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segregation coefficient of plasmid-bearing cells 
ratio of concentrations of plasmidless to plasmid- 
bearing cells ( =X-/X’) 
initial value of parameter X ( i.e. at t = 0) 
parameter defined by Eq. (32) 
fractional concentration of plasmidless cells with 
“history parameter” I k, expressed as a fraction of 
the overall concentration of plasmidless cells 
specific growth rate of cells (h ’ ) 
specific growth rate of plasmid-bearing cells 
@-‘I 
specific growth rate of plasmidless cells ( hP ‘) 
fractional concentration of plasmidless cells 
having a “history parameter” i- given by 
[iLli- Ii,,] 
“history parameter” of plasmidless cells 
originating at the instant; in the r-domain, at the 
current instant 7 
dimensionless time variable denoting the number 
of generations, fractional or integral, in a culture; 
also denotes the current instant in the 
dimensionless time domain 

Superscripts 

+ plasmid-bearing cells 
- plasmidless cells 

Subscripts 

k corresponding to the value of “history 
parameter” = k 

L lower limit 
0 initial instant (i.e. t = 0 or 7= 0) 
t the real time instant, t 

L 
the dimensionless time domain instant, T 
upper limit 

z the instant z in the dimensionless time domain 
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